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ABSTRACT

This paper describes the structure and the operation of Plan 9 file
servers. The specifics apply to our main Plan 9 file server Emelie, but the
code is also the basis for the user level file server kfs.

Introduction

The Plan 9 file server Emelie is the oldest piece of system software still in use on
Plan 9. It evolved from a user-level program that served serial lines on a Sequent
multi-processor. The current implementation is neither clean nor portable, but it has
slowly come to terms with its particular set of cranky computers and devices.

Process Structure

The Plan 9 file system server is made from an ancient version of the Plan 9 kernel.
The kernel contains process control, synchronization, locks, and some memory alloca
tion. The kernel has no user processes or virtual memory.

The structure of the file system server is a set of kernel processes synchronizing
mostly through message passing. In Emelie there are 26 processes of 10 types:

number name function
15 srv Main file system server processes

1 rah Block read-ahead processes
1 scp Sync process
1 wcp WORM copy process
1 con Console process
1 ilo IL protocol process
1 ilt IL timer process
2 ethi Ethernet input process
2 etho Ethernet output process
1 flo Floppy disk process

The server processes

The main file system algorithm is a set of identical processes named srv that
honor the 9P protocol. Each file system process waits on a message queue for an
incoming request. The request contains a 9P message and the address of a reply queue.
A srv process parses the message, performs pseudo-disk I/O to the corresponding file
system block device, formulates a response, and sends the response back to the reply
queue.

The unit of storage is a block of data on a device:
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enum
{

RBUFSIZE = 16*1024
};

typedef
struct
{

short pad;
short tag;
long path;

} Tag;

enum
{

BUFSIZE = RBUFSIZE − sizeof(Tag)
};

typedef
struct
{

uchar data[BUFSIZE];
Tag tag;

} Block;

All devices are idealized as a perfect disk of contiguously numbered blocks each of size
RBUFSIZE. Each block has a tag that identifies what type of block it is and a unique id
of the file or directory where this block resides. The remaining data in the block
depends on what type of block it is.

The srv process�s main data structure is the directory entry. This is the equiva
lent of a UNIX i-node and defines the set of block addresses that comprise a file or
directory. Unlike the i-node, the directory entry also has the name of the file or direc
tory in it:

enum
{

NAMELEN = 28,
NDBLOCK = 6

};

typedef
struct
{

char name[NAMELEN];
short uid;
short gid;
ushort mode;
short wuid;
Qid qid;
long size;
long dblock[NDBLOCK];
long iblock;
long diblock;
long atime;
long mtime;

} Dentry;

Each directory entry holds the file or directory name, protection mode, access times,
user-id, group-id, and addressing information. The entry wuid is the user-id of the
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last writer of the file and size is the size of the file in bytes. The first 6 blocks of the
file are held in the dblock array. If the file is larger than that, an indirect block is allo
cated that holds the next BUFSIZE/sizeof(long) blocks of the file. The indirect
block address is held in the structure member iblock. If the file is larger yet, then
there is a double indirect block that points at indirect blocks. The double indirect
address is held in diblock and can point at another (BUFSIZE/sizeof(long))2

blocks of data. The maximum addressable size of a file is therefore 275 Gbytes. There
is a tighter restriction of 232 bytes because the length of a file is maintained in a long.
Even so, sloppy use of long arithmetic restricts the length to 231 bytes. These numbers
are based on Emelie which has a block size of 16K and sizeof(long) is 4. It would
be different if the size of a block changed.

The declarations of the indirect and double indirect blocks are as follows.

enum
{

INDPERBUF = BUFSIZE/sizeof(long),
};

typedef
{

long dblock[INDPERBUF];
Tag ibtag;

} Iblock;

typedef
{

long iblock[INDPERBUF];
Tag dibtag;

} Diblock;

The root of a file system is a single directory entry at a known block address. A
directory is a file that consists of a list of directory entries. To make access easier, a
directory entry cannot cross blocks. In Emelie there are 233 directory entries per block.

The device on which the blocks reside is implicit and ultimately comes from the 9P
attach message that specifies the name of the device containing the root.

Buffer Cache

When the file server is booted, all of the unused memory is allocated to a block
buffer pool. There are two major operations on the buffer pool. Getbuf will find the
buffer associated with a particular block on a particular device. The returned buffer is
locked so that the caller has exclusive use. If the requested buffer is not in the pool,
some other buffer will be relabeled and the data will be read from the requested device.
Putbuf will unlock a buffer and if the contents are marked as modified, the buffer will
be written to the device before the buffer is relabeled. If there is some special mapping
or CPU cache flushing that must occur in order for the physical I/O device to access the
buffers, this is done between getbuf and putbuf. The contents of a buffer is never
touched except while it is locked between getbuf and putbuf calls.

The file system server processes prevent deadlock in the buffers by always locking
parent and child directory entries in that order. Since the entire directory structure is a
hierarchy, this makes the locking well-ordered, preventing deadlock. The major prob
lem in the locking strategy is that locks are at a block level and there are many directory
entries in a single block. There are unnecessary lock conflicts in the directory blocks.
When one of these directory blocks is tied up accessing the very slow WORM, then all
I/O to dozens of unrelated directories is blocked.
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Block Devices

The block device I/O system is like a protocol stack of filters. There are a set of
pseudo-devices that call recursively to other pseudo-devices and real devices. The pro
tocol stack is compiled from a configuration string that specifies the order of pseudo-
devices and devices. Each pseudo-device and device has a set of entry points that cor
responds to the operations that the file system requires of a device. The most notable
operations are read, write, and size.

The device stack can best be described by describing the syntax of the configura
tion string that specifies the stack. Configuration strings are used during the setup of
the file system. For a description see fsconfig(8). In the following recursive definition,
D represents a string that specifies a block device.

D = (DD...)
This is a set of devices that are concatenated to form a single device. The size of
the catenated device is the sum of the sizes of each sub-device.

D = [DD...]
This is the interleaving of the individual devices. If there are N devices in the list,
then the pseudo-device is the N-way block interleaving of the sub-devices. The
size of the interleaved device is N times the size of the smallest sub-device.

D = pDN1.N2
This is a partition of a sub-device. The sub-device is partitioned into 100 equal
pieces. If the size of the sub-device is not divisible by 100, then there will be
some slop thrown away at the top. The pseudo-device starts at the N1-th piece
and continues for N2 pieces. Thus pD67.33 will be the last third of the device D.

D = fD
This is a fake write-once-read-many device simulated by a second read-write
device. This second device is partitioned into a set of block flags and a set of
blocks. The flags are used to generate errors if a block is ever written twice or
read without being written first.

D = cDD
This is the cache/WORM device made up of a cache (read-write) device and a
WORM (write-once-read-many) device. More on this later.

D = o
This is the dump file system that is the two-level hierarchy of all dumps ever taken
on a cache/WORM. The read-only root of the cache/WORM file system (on the
dump taken Feb 18, 1995) can be referenced as /1995/0218 in this pseudo
device. The second dump taken that day will be /1995/02181.

D = wN1.N2
This is a SCSI disk on controller N1 and target N2.

D = lN1.N2
This is the same as w, but one block from the SCSI disk is removed for labeling.

D = j(D
1
D

2
*)D

3
D

1
is the juke box SCSI interface. The D

2
�s are the SCSI drives in the juke box and

the D
3
�s are the demountable platters in the juke box. D

1
and D

2
must be w. D

3
must be pseudo devices of w or l devices.

For both w and r devices any of the configuration numbers can be replaced by an
iterator of the form <N1−N2>. Thus

[w0.<2−6>]

is the interleaved SCSI disks on SCSI targets 2 through 6 of SCSI controller 0. The main
file system on Emelie is defined by the configuration string
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c[w1.<0−5>.0]j(w6w5w4w3w2)l(<0−236>l<238−474>)

This is a cache/WORM driver. The cache is three interleaved disks on SCSI controller 1
targets 0, 1, 2, 3, 4, and 5. The WORM half of the cache/WORM is 474 jukebox disks.

The read−ahead processes

There are a set of file system processes, rah, that wait for messages consisting of
a device and block address. When a message comes in, the process reads the specified
block from the device. This is done by calling getbuf and putbuf. The purpose of
this is the hope that these blocks will be used later and that they will reside in the buffer
cache long enough not to be discarded before they are used.

The messages to the read-ahead processes are generated by the server processes.
The server processes maintain a relative block mark in every open file. Whenever an
open file reads that relative block, the next 110 block addresses of the file are sent to
the read-ahead processes and the relative block mark is advanced by 100. The initial
relative block is set to 1. If the file is opened and only a few bytes are read, then no
anticipating reads are performed since the relative block mark is set to 1 and only block
offset 0 is read. This is to prevent some fairly common action such as

file *

from swamping the file system with read-ahead requests that will never be used.

Cache/WORM Driver

The cache/WORM (cw) driver is by far the largest and most complicated device
driver in the file server. There are four devices involved in the cw driver. It implements
a read/write pseudo-device (the cw-device) and a read-only pseudo-device (the dump
device) by performing operations on its two constituent devices the read-write c-device
and the write-once-read-many w-device. The block numbers on the four devices are
distinct, although the cw addresses, dump addresses, and the w addresses are highly
correlated.

The cw-driver uses the w-device as the stable storage of the file system at the time
of the last dump. All newly written and a large number of recently used exact copies of
blocks of the w-device are kept on the c-device. The c-device is much smaller than the
w-device and so the subset of w-blocks that are kept on the c-device are mapped
through a hash table kept on a partition of the c-device.

The map portion of the c-device consists of blocks of buckets of entries. The dec
larations follow.

enum
{

BKPERBLK = 10,
CEPERBK = (BUFSIZE − BKPERBLK*sizeof(long)) /

(sizeof(Centry)*BKPERBLK),
};

typedef
struct
{

ushort age;
short state;
long waddr;

} Centry;
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typedef
struct
{

long agegen;
Centry entry[CEPERBK];

} Bucket;

Bucket bucket[BKPERBLK];

There is exactly one entry structure for each block in the data partition of the c-device.
A bucket contains all of the w-addresses that have the same hash code. There are as
many buckets as will fit in a block and enough blocks to have the required number of
entries. The entries in the bucket are maintained in FIFO order with an age variable and
an incrementing age generator. When the age generator is about to overflow, all of the
ages in the bucket are rescaled from zero.

The following steps go into converting a w-address into a c-address. The bucket
is found by

bucket_number = w−address % total_buckets
getbuf(c−device, bucket_offset + bucket_number/BKPERBLK);

After the desired bucket is found, the desired entry is found by a linear search within
the bucket for the entry with the desired waddr.

The state variable in the entry is one of the following.

enum
{

Cnone = 0,
Cdirty,
Cdump,
Cread,
Cwrite,
Cdump1,

};

Every w-address has a state. Blocks that are not in the c-device have the implied state
Cnone. The Cread state is for blocks that have the same data as the corresponding
block in the w-device. Since the c-device is much faster than the w-device, Cread
blocks are kept as long as possible and used in preference to reading the w-device.
Cread blocks may be discarded from the c-device when the space is needed for newer
data. The Cwrite state is when the c-device contains newer data than the correspond
ing block on the w-device. This happens when a Cnone, Cread, or Cwrite block is
written. The Cdirty state is when the c-device contains new data and the correspond
ing block on the w-device has never been written. This happens when a new block has
been allocated from the free space on the w-device.

The Cwrite and Cdirty blocks are created and never removed. Unless some
thing is done to convert these blocks, the c-device will gradually fill up and stop func
tioning. Once a day, or by command, a dump of the cw-device is taken. The purpose of
a dump is to queue the writes that have been shunted to the c-device to be written to
the w-device. Since the w-device is a WORM, blocks cannot be rewritten. Blocks that
have already been written to the WORM must be relocated to the unused portion of the
w-device. These are precisely the blocks with Cwrite state.

The dump algorithm is as follows: a) The tree on the cw-device is walked as long
as the blocks visited have been modified since the last dump. These are the blocks with
state Cwrite and Cdirty. It is possible to restrict the search to within these blocks
since the directory containing a modified file must have been accessed to modify the file
and accessing a directory will set its modified time thus causing the block containing it
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to be written. The directory containing that directory must be modified for the same
reason. The tree walk is thus drastically restrained and the tree walk does not take
much time. b) All Cwrite blocks found in the tree search are relocated to new blank
blocks on the w-device and converted to Cdump state. All Cdirty blocks are con
verted to Cdump state without relocation. At this point, all modified blocks in the cw-
device have w-addresses that point to unwritten WORM blocks. These blocks are
marked for later writing to the w-device with the state Cdump. c) All open files that
were pointing to modified blocks are reopened to point at the corresponding reallocated
blocks. This causes the directories leading to the open files to be modified. Thus the
invariant discussed in a) is maintained. d) The background dumping process will slowly
go through the map of the c-device and write out all blocks with Cdump state.

The dump takes a few minutes to walk the tree and mark the blocks. It can take
hours to write the marked blocks to the WORM. If a marked block is rewritten before
the old copy has been written to the WORM, it must be forced to the WORM before it is
rewritten. There is no problem if another dump is taken before the first one is finished.
The newly marked blocks are just added to the marked blocks left from the first dump.

If there is an error writing a marked block to the WORM then the dump state is con
verted to Cdump1 and manual intervention is needed. (See the cwcmd mvstate com
mand in fs(8)). These blocks can be disposed of by converting their state back to
Cdump so that they will be written again. They can also be converted to Cwrite state
so that they will be allocated new addresses at the next dump. In most other respects, a
Cdump1 block behaves like a Cwrite block.

Sync Copy and WORM Copy Processes

The scp process wakes up every ten seconds and issues writes to blocks in the
buffer cache that have been modified. This is done automatically on important console
commands such as halt and dump.

The wcp process also wakes up every ten seconds and tries to copy a dump block
from the cache to the WORM. As long as there are dump blocks to copy and there is no
competition for the WORM device, the copy will continue at full speed. Whenever there
is competition for the WORM or there are no more blocks to copy, then the process will
sleep ten seconds before looking again.

The HP WORM jukebox consists of 238 disks divided into 476 sides or platters.
Platter 0 is the A side of disk 0. Platter 1 is the A side of the disk 1. Platter 238 is the B
side of disk 0. On Emelie, the main file system is configured on both sides of the first
237 disks, platters 0-236 and 238-474.

9P Protocol Drivers

The file server described so far waits for 9P protocol messages to appear in its
input queue. It processes each message and sends the reply back to the originator.
There are groups of processes that perform protocol I/O on some network or device and
the resulting messages are sent to the file system queue.

There are two sets of processes ethi and etho that perform Ethernet input and
output on two different networks. These processes send Ethernet messages to/from
two more processes ilo and ilt that do the IL reliable datagram protocol on top of IP
packets.

The last process in Emelie, con, reads the console and calls internal subroutines to
executes commands typed. Since there is only one process, only one command can be
executing at a time. See fs(8) for a description of the commands available at the con
sole.


